

Maxi Mineral Scale and Rust Removal

GSB Chemicals (KCB Sales)

Chemwatch: **21-9644**Version No: **3.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 09/04/2014 Print Date: 13/02/2015 Initial Date: Not Available

L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Maxi Mineral Scale and Rust Removal
Synonyms	MSR, Product Code: Jds Bk1 12A
Proper shipping name	CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S. (contains glycolic acid and sulfamic acid)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified	Use according to manufacturer's directions.
uses	For removal of calcium, lime deposits and rust stains off a variety of surfaces.

Details of the manufacturer/importer

Registered company name	GSB Chemicals (KCB Sales)
Address	84 Camp Road Broadmeadows 3047 VIC Australia
Telephone	+61 3 9457 1125
Fax	+61 3 9459 7978
Website	Not Available
Email	Not Available

Emergency telephone number

3,	
Association / Organisation	Not Available
Emergency telephone numbers	+61 3 9457 1125 (9am-5pm)
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	0		
Toxicity	2	0 = Mini	mu
Body Contact	3	1 = Low	
Reactivity	1	2 = Mod 3 = Hig	
Chronic	3	4 = Extre	

Poisons Schedule	S5
GHS Classification ^[1]	Metal Corrosion Category 1, Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1, Reproductive Toxicity Category 1B
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Version No: 3.1.1.1

Maxi Mineral Scale and Rust Removal

Issue Date: **09/04/2014**Print Date: **13/02/2015**

Label elements

GHS label elements

SIGNAL WORD

DANGER

Hazard statement(s)

H290	May be corrosive to metals
H302	Harmful if swallowed
H332	Harmful if inhaled
H314	Causes severe skin burns and eye damage
H318	Causes serious eye damage
H360	May damage fertility or the unborn child

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P234	Keep only in original container.
P270	Do not eat, drink or smoke when using this product.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P308+P313	IF exposed or concerned: Get medical advice/attention.			
P310	Immediately call a POISON CENTER/doctor/physician/first aider			
P363	Wash contaminated clothing before reuse.			
P390	Absorb spillage to prevent material damage.			
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal P501 Dispose of content

Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
79-14-1	10-30	glycolic acid	
5329-14-6	<10	sulfamic acid	
5949-29-1	<10	citric acid, monohydrate	
Not Available	<10	surfactants	
7732-18-5	>60	water	

Chemwatch: 21-9644 Page 3 of 16 Issue Date: 09/04/2014 Print Date: 13/02/2015 Version No: 3.1.1.1

Maxi Mineral Scale and Rust Removal

SECTION 4 FIRST AID MEASURES

Description of first aid measures If this product comes in contact with the eves: ▶ Immediately hold eyelids apart and flush the eye continuously with running water. ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally **Eye Contact** lifting the upper and lower lids. ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin or hair contact occurs: ▶ Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Skin Contact ▶ Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. • If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. ▶ Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. ▶ Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) • For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. ▶ If swallowed do **NOT** induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and Ingestion prevent aspiration. ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. ▶ Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ▶ Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short term repeated exposures to strong acids:

- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

Chemwatch: 21-9644 Page 4 of 16 Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider:

- ▶ dry chemical powder.
- · carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Advice for firefighters

▶ Alert Fire Brigade and tell them location and nature of hazard.

- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire Fighting

Non combustible.

▶ Non combustible.

- Not considered to be a significant fire risk.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ May emit corrosive, poisonous fumes. May emit acrid smoke.
- Fire/Explosion Hazard
- ▶ Not considered to be a significant fire risk.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ Decomposes on heating and may produce toxic fumes of carbon monoxide (CO).
- ▶ May emit acrid smoke. May emit corrosive fumes.

Decomposition may produce toxic fumes of; carbon dioxide (CO2), sulfur oxides (SOx), other pyrolysis products typical of burning organic material

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

- ▶ Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Place in a suitable, labelled container for waste disposal.

Chemical Class:acidic compounds, organic

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

Major Spills

Minor Spills

wood fiber - pillow	1	throw	pitchfork	R, P, DGC, RT
cross-linked polymer - particulate	1	shovel	shovel	R,W,SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
foamed glass - pillow	2	throw	pitchfork	R, P, DGC, RT
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC

Chemwatch: 21-9644 Page 5 of 16 Issue Date: 09/04/2014 Version No: 3.1.1.1

Maxi Mineral Scale and Rust Removal

Print Date: 13/02/2015

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
polypropylene - particulate	2	blower	skiploader	W, SS, DGC
sorbent clay - particulate	2	blower	skiploader	R, I, P
cross-linked polymer - pillow	3	throw	skiploader	R, DGC, RT
polypropylene - mat	3	throw	skiploader	W, SS, DGC
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC

Legend

DGC: Not effective where ground cover is dense

R: Not reusable

I. Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- ▶ Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- ▶ Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Suitable container

- ▶ Store in original containers.
- ▶ Keep containers securely sealed.
- ▶ Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

- ▶ DO NOT use aluminium or galvanised containers
- ▶ Check regularly for spills and leaks
- ▶ Lined metal can, lined metal pail/ can.
- ▶ Plastic pail.
- Polvliner drum.

Chemwatch: 21-9644 Page 6 of 16 Issue Date: 09/04/2014 Version No: 3.1.1.1

Maxi Mineral Scale and Rust Removal

Print Date: 13/02/2015

- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging:
- ▶ Cans with friction closures and
- ▶ low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

- ▶ reacts violently with chlorine, nitric acid, fuming nitric acid, strong bases, chlorine, hypochlorous acid, strong oxidising agents, sulfides, cyanides or when heated with nitrates, nitrites
- ▶ is strongly acidic in aqueous solution
- hvdrolyses to ammonium bisulfate at elevated temperatures
- ▶ is incompatible with alkylene oxides, aliphatic amines, alkanolamines, amides, ammonia, epichlorohydrin, organic anhydrides, isocyanates, metal nitrates/ nitrites, oxidisers, vinyl acetate, common metals and their alloys, water

Contact with metals may result in the evolution of hydrogen (H2) which can form explosive mixtures in air.

- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- ▶ Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
- Avoid strong acids, bases.

PACKAGE MATERIAL INCOMPATIBILITIES

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
glycolic acid	Glycolic acid; (Hydroxyacetic acid)	4.7 mg/m3	51 mg/m3	390 mg/m3
sulfamic acid	Sulfamic acid	9.5 mg/m3	100 mg/m3	630 mg/m3
citric acid, monohydrate	Citric acid monohydrate	2.3 mg/m3	25 mg/m3	150 mg/m3
citric acid, monohydrate	Citric acid	0.37 mg/m3	4 mg/m3	590 mg/m3

Ingredient	Original IDLH	Revised IDLH
glycolic acid	Not Available	Not Available
sulfamic acid	Not Available	Not Available
citric acid, monohydrate	Not Available	Not Available
surfactants	Not Available	Not Available
water	Not Available	Not Available

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

cause inflammation

Chemwatch: 21-9644 Page 7 of 16

Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 13/02/2015 Maxi Mineral Scale and Rust Removal

- cause increased susceptibility to other irritants and infectious agents
- ▶ lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Chemical goggles.

- Full face shield may be required for supplementary but never for primary protection of eyes.

Eye and face protection

▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent1

Skin protection

See Hand protection below

Chemwatch: 21-9644 Page 8 of 16 Issue Date: 09/04/2014
Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

▶ Wear chemical protective gloves, e.g. PVC. • Wear safety footwear or safety gumboots, e.g. Rubber ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact. • chemical resistance of glove material, Hands/feet protection • glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). ▶ When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. ▶ When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. • Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. PVC Apron. Other protection ▶ PVC protective suit may be required if exposure severe. Evewash unit. • Ensure there is ready access to a safety shower. Thermal hazards Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Maxi Mineral Scale and Rust Removal

Material	СРІ
BUTYL	A
NEOPRENE	A
VITON	A
NATURAL RUBBER	С
PVA	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type B-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	B-AUS P2	-	B-PAPR-AUS / Class 1 P2
up to 50 x ES	-	B-AUS / Class 1 P2	-
up to 100 x ES	-	B-2 P2	B-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties Appearance Clear acidic liquid; miscible with water. Physical state Liquid Relative density (Water = 1) 1.0

Chemwatch: 21-9644 Page 9 of 16 Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	0.5	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	>85
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution(1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Contact with alkaline material liberates heat Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a

Inhaled

substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of sulfamic acid may cause bloody spit, difficulty breathing, low blood pressure, headache, dizziness, bluish skin colour and lung congestion.

Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Ingestion

Ingestion of sulfamic acid may cause vomiting, diarrhoea and a drop in blood pressure. Asphyxia may occur from oedema of the glottis. After initial recovery, onset of fever indicates mediastinitis or peritonitis from perforation of the esophagus or Chemwatch: 21-9644 Page 10 of 16

Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

stomach. Ingestion of greater than 10% solutions will cause lesions of the stomach.

Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa. Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal.

Ingestion of low-molecular organic acid solutions may produce spontaneous haemorrhaging, intravascular coagulation, gastrointestinal damage and oesophageal and pyloric stricture.

Concentrated solutions may cause chemical burns. The effects of sulfamic acid on the skin appear to be limited to the

Skin Contact

The material can produce chemical burns following direct contact with the skin.

effects of low pH. Concentrations of greater than 20% of sulfamic acid may injure the skin. Repeated application of a 4% solution of sulfamic acid several times a day for 5 days on the skin produced mild irritation Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly

Open cuts, abraded or irritated skin should not be exposed to this material

with the formation of scar tissue.

Eye

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness.

Dilute solutions of low-molecular organic acids cause conjunctival hyperaemia, prompt pain and corneal injury.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of:

- clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Chronic

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatics appear to be at particular risk for pulmonary effects.

Maxi Mineral Scale and	TOXICITY	IRRITATION
Rust Removal	Oral (Rat) LD50: 7500 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
glycolic acid	Inhalation (rat) LC50: 7.1E-6 mg/L/4H ^[2]	Not Available
	Oral (rat) LD50: 1950 mg/kg ^[2]	
	TOXICITY	IRRITATION
sulfamic acid	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 20 mg - moderate
	Oral (rat) LD50: ca.1450 mg/kg ^[1]	Eye (rabbit): 250 ug/24 h - SEVERE
		Skin (human): 4 %/5 days (I)- mild

Chemwatch: 21-9644 Page 11 of 16 Issue Date: 09/04/2014
Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

		Skin (rabbit): 500 mg/24 h-SEVERE	
	TOXICITY	IRRITATION	
citric acid, monohydrate	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 5 mg/30s mild	
o.i.yuruto	Oral (rat) LD50: 3000 mg/kgd ^[2]		
ļ	TOXICITY	IRRITATION	
water	Oral (rat) LD50: >90000 mg/kg ^[2]	Not Available	
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's msds unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Maxi Mineral Scale and Rust Removal

Acute toxicity: Glycolic acid (70% solution) is slightly toxic via the oral route, having an LD50 in rats of 193 8 mg/kg. It is moderately toxic via the inhalation route in male rats with a 4-hour LC50 of 3.6 mg/L. Glycolic acid is a skin and eye corrosive, but it is not a skin sensitiser in animals.

However, numerous studies in humans with cosmetic products containing lower percentages of glycolic acid have shown some skin irritation potential, but no corrosivity.

Repeat dose toxicity: Repeated exposures to glycolic acid via inhalation produced liver, spleen, thymus changes, and gastrointestinal tract alterations. Repeated administration of glycolic acid to rats by oral intubation caused decreases in body weight, body weight gain, food consumption, and food efficiency. In addition, toxicologically significant changes in haematologic measurements, clinical chemistry, and urinalysis parameters, as well as kidney lesions were observed. Developmental and reproductive toxicity: Maternal and developmental toxicity of crystalline, 99.6% pure, glycolic acid in the rat was seen at 300 and 600 mg/kg/day. The maternal and developmental NOEL was 150 mg kg/day, thus glycolic acid is not considered a unique developmental hazard to the conceptus.

Glycolic acid did not affect reproductive performance in rats during a one-generation reproduction study following a 90-day feeding study.

Genotoxicity: The compound was negative in the *in vitro* bacterial reverse mutation assay (*Salmonella* and E. *coli*). Glycolic acid produced a positive response in the *in* vitro mouse lymphoma assay only at excessively high concentrations under activated conditions, but was negative in the *in vivo* mouse micronucleus assay.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

GLYCOLIC ACID

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search. for acid mists, aerosols, vapours

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures *in vitro* in that, *in vivo*, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of

Chemwatch: **21-9644** Page **12** of **16**

Version No: 3.1.1.1 Maxi Mineral Scale and Rust Removal

Page **12** of **16** Issue Date: **09/04/2014**Print Date: **13/02/2015**

intracellular homeostasis may be maintained more readily than in vitro.

For glycolic acid:

Acute toxicity: Glycolic acid (70% solution) is slightly toxic via the oral route, having an LD50 in rats of 193 8 mg/kg. It is moderately toxic via the inhalation route in male rats with a 4-hour LC50 of 3.6 mg/L. Glycolic acid is a skin and eye corrosive, but it is not a skin sensitiser in animals.

However, numerous studies in humans with cosmetic products containing lower percentages of glycolic acid have shown some skin irritation potential, but no corrosivity.

Repeat dose toxicity: Repeated exposures to glycolic acid via inhalation produced liver, spleen, thymus changes, and gastrointestinal tract alterations. Repeated administration of glycolic acid to rats by oral intubation caused decreases in body weight, body weight gain, food consumption, and food efficiency. In addition, toxicologically significant changes in haematologic measurements, clinical chemistry, and urinalysis parameters, as well as kidney lesions were observed. Developmental and reproductive toxicity: Maternal and developmental toxicity of crystalline, 99.6% pure, glycolic acid in the rat was seen at 300 and 600 mg/kg/day. The maternal and developmental NOEL was 150 mg kg/day, thus glycolic acid is not considered a unique developmental hazard to the conceptus.

Glycolic acid did not affect reproductive performance in rats during a one-generation reproduction study following a 90-day feeding study.

Genotoxicity: The compound was negative in the *in vitro* bacterial reverse mutation assay (*Salmonella* and E. *coli*). Glycolic acid produced a positive response in the *in* vitro mouse lymphoma assay only at excessively high concentrations under activated conditions, but was negative in the *in vivo* mouse micronucleus assay.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for simple alpha-hydroxy carboxylic acids and their salts:

The toxicology of simple alpha hydroxy carboxylic acids cluster is characterised by five compounds sharing the functional group defining the cluster name

Experimental data available for members of the simple alpha-hydroxy carboxylic acids indicate a low acute, repeated-dose, reproductive and developmental toxicity.

The simple alpha hydroxy carboxylic acids are eye and skin irritants but are not expected to be skin sensitisers. Genotoxicity test data for two cluster members and a cancer bioassay for the calcium salt of propanoic acid, 2-hydroxy-yielded negative results and all other cluster members are considered to have little or no mutagenic or carcinogenic potential.

Acute oral toxicity of propanoic acid, 2-hydroxy- (2S)- (79-33-4) and propanoic acid, 2-hydroxy- (50-21-5) are low. The repeated-dose and developmental toxicity of the three tested simple alpha -hydroxy carboxylic acids is low. In EPA's High Production Volume Program, reproductive toxicity testing for propanoic acid, 2-hydroxy- (50-21-5) was deemed unnecessary because it is a normal component of human intermediary metabolism. Reproductive toxicity of acetic acid, 2-hydroxy- (79-14-1) has been tested and was found to be low. Low reproductive toxicity of the associated potassium salts is also expected to be low. Alpha-hydroxy carboxylic acids are severe eye irritants. Acetic acid, 2-hydroxy- (79-14-1), propanoic acid, 2-hydroxy- (2S)- (79-33-4) and propanoic acid, 2-hydroxy- (50-21-5) all produced positive skin irritation in rabbits. The members of this cluster are not expected to be skin sensitisers based on negative results in guinea pigs for both acetic acid, 2-hydroxy- (79-14-1) and propanoic acid, 2-hydroxy- (2S)- (79-33-4). Genotoxicity data for acetic acid, 2-hydroxy-(79-14-1) and propanoic acid, 2-hydroxy- (50-21-5) are negative, indicating that none of the cluster members are expected to be genotoxic. A 2-year drinking water study of the calcium salt of propanoic acid, 2-hydroxy- (50-21-5) in rats showed no evidence of carcinogenicity. An expert judgment based on mechanism-based structure-activity relationship considerations indicate little or no carcinogenic potential for any of the cluster members due to expected rapid metabolism/excretion and lack of genotoxic structural alert. This judgment is supported by the negative cancer and mutagenicity data for propanoic acid, 2-

hydroxy- (50-21-5), which is considered a reasonable analogue to the rest of the cluster.

for acid mists, aerosols, vapours

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures *in vitro* in that, *in vivo*, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro.

SULFAMIC ACID

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration

Chemwatch: 21-9644 Page 13 of 16 Issue Date: 09/04/2014
Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

Print Date: 13/02/2015

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

CITRIC ACID,

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

WATER

No significant acute toxicological data identified in literature search.

Acute Toxicity	~	Carcinogenicity	0
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	0
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

- ✓ Data required to make classification available
- Data available but does not fill the criteria for classification

CMR STATUS

Not Applicable

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

NOT AVAILABLE

Ingredient	Endpoint	Test Duration	Effect	Value	Species	BCF
glycolic acid	Not Available					
sulfamic acid	Not Available					
citric acid, monohydrate	Not Available					
surfactants	Not Available					
water	Not Available					

Fcotoxicity:

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5

For glycolic acid:

Readily biodegradable.

After 7 days 89.65 is biodegraded (closed bottle test).

log Kow : -1.11

Chemwatch: 21-9644 Page 14 of 16

Version No: 3.1.1.1 Maxi Mineral Scale and Rust Removal

Issue Date: **09/04/2014**Print Date: **13/02/2015**

BOD 5 0.175

Environmental fate:

Glycolic acid is a colorless, odorless, crystalline solid, but is usually supplied as a 70% solution. In this form it is a clear, colorless liquid with a mild odor. As a 70% solution, it has a saturation point of 10 C, boiling point of 112 C, and is non-flammable.

The Henry's Law constant for glycolic acid is estimated to be 8.5 x10-8 atm-m3/mole, therefore glycolic acid will not volatilise rapidly from water surfaces. The estimated half-life from a river is 373.8 days and 2721 days from a model lake based on volatilisation alone, with no accounting for biodegradation. If discharged into water, it is estimated that glycolic acid will partition predominately in the water compartment. Glycolic acid biodegrades quickly, with and without acclimation using a variety of microbial inoculum. Accordingly, glycolic acid is not expected to biopersist or bioaccumulate in the environment.

Ecotoxicity:

Aquatic toxicity: Slight

Fish LC50 (96 h): fathead minnow 164 mg/l; bluegill sunfish 93 mg/l

Daphnia EC50 (48 h): 141 mg/l

Glycolic acid exhibits low toxicity to aquatic organisms. Glycolic acid caused stimulation of algal growth at pH 7.5 under illumination, but when used as a carbon source, did not support heterotrophic growth in the dark.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
glycolic acid	LOW	LOW
sulfamic acid	HIGH	HIGH
citric acid, monohydrate	LOW	LOW
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
glycolic acid	LOW (LogKOW = -1.11)
sulfamic acid	LOW (LogKOW = -4.3438)
citric acid, monohydrate	LOW (LogKOW = -1.64)
water	LOW (LogKOW = -1.38)

Mobility in soil

Ingredient	Mobility
glycolic acid	HIGH (KOC = 1)
sulfamic acid	LOW (KOC = 6.124)
citric acid, monohydrate	LOW (KOC = 10)
water	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- Reduction
- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.

Chemwatch: 21-9644 Page 15 of 16

Version No: 3.1.1.1 Maxi Mineral Scale and

Maxi Mineral Scale and Rust Removal

Issue Date: **09/04/2014**Print Date: **13/02/2015**

- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

	OORROSIVE 8
Marine Pollutant	NO
HAZCHEM	2X

Land transport (ADG)

· ` ` '	
UN number	3265
Packing group	II
UN proper shipping name	CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S. (contains glycolic acid and sulfamic acid)
Environmental hazard	No relevant data
Transport hazard class(es)	Class 8 Subrisk Not Applicable
Special precautions for user	Special provisions 274 Limited quantity 1 L

Air transport (ICAO-IATA / DGR)

UN number	3265		
Packing group	II		
UN proper shipping name	Corrosive liquid, acidic, organic, n.o.s. * (contains glycolic acid and sulfamic acid)		
Environmental hazard	No relevant data		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code		
	Special provisions Cargo Only Packing In		A3A803 855 30 L
Special precautions for user	Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack		851 1 L
	Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		Y840 0.5 L

Sea transport (IMDG-Code / GGVSee)

UN number	3265
Packing group	II
UN proper shipping name	CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S. (contains glycolic acid and sulfamic acid)
Environmental hazard	Not Applicable

Chemwatch: 21-9644 Page 16 of 16 Issue Date: 09/04/2014 Version No: 3.1.1.1 Print Date: 13/02/2015

Maxi Mineral Scale and Rust Removal

Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable
Special precautions for user	EMS Number F-A , S-B Special provisions 274 Limited Quantities 1 L

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	glycolic acid	Z
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	citric acid, monohydrate	Z

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

glycolic acid(79-14-1) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)","Australia Hazardous Substances Information System - Consolidated Lists"
sulfamic acid(5329-14-6) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)","Australia Hazardous Substances Information System - Consolidated Lists"
citric acid, monohydrate(5949-29-1) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)"
water(7732-18-5) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)"

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.